Cost-Effective Bioremediation of Perchlorate in Soil & Groundwater

Evan Cox - GeoSyntec Consultants Elizabeth Edwards - University of Toronto Scott Neville & Michael Girard - Aerojet

Outline

- Perchlorate Biodegradation
- Groundwater In Situ Bioremediation
 - SERDP Study to Assess DoD Applicability
 - Aerojet Field Demonstration
- Soil Bioremediation Demonstrations
- Phytoremediation Demonstrations

Perchlorate Biodegradation Mechanism

- Bacteria present in soil, water & wastes can use perchlorate as an electron acceptor
- A wide variety of carbon substrates can serve as electron donors
 - Sugars (molasses)
 - Alcohols (methanol, ethanol)
 - Volatile Acids (acetate, lactate)
 - Wastes (food processing, manure)
- Reaction occurs under anaerobic-reducing conditions

Groundwater In Situ Bioremediation

In Situ Bioremediation Goals

- 1. Destruction of source areas to reduce remedial duration and cost
- 2. Passive/semi-passive in situ bio-barriers to prevent ClO₄ migration in GW or discharge to SW

In situ bio can be coupled with other (ex situ) technologies

In Situ Bioremediation Concept

Strategic Environmental Research & Development Program (SERDP)

In Situ Bioremediation of Perchlorate in Groundwater

GeoSyntec, University of Toronto & Aerojet

SERDP Research Goals

- Evaluate the ubiquity of perchlorate biodegraders and the applicability of in situ bioremediation
- Assess geochemical tolerance ranges
 - concentration, pH, salinity
 - competing electron acceptors (nitrate, sulfate)
- Treatment of mixed plumes (TCE, BTEX, NDMA)
- Field demonstration

SERDP Test Sites

- 1. Edwards AFB, California
- 2. US Navy, West Virginia
- 3. US Navy, California
- 4. Rocket Manufacturer, California
- 5. Aerojet Superfund Site, California

6. Industrial Site, Nevada

SERDP Task 1 - Site Screening

- Laboratory microcosm testing using soil and groundwater from geochemically different sites
- Assess level of intrinsic degradation
- Evaluate potential to enhance biodegradation through addition of various electron donors (acetate, molasses, oils)
- Identify sites for further lab/field pilot testing

Site 1. Edwards Air Force Base, CA

- Rocket manufacturing site
- Alluvial deposits to > 250 feet bgs
- Watertable at ~125 ft bgs
- ClO₄ up to 160 mg/L
- Nitrate = 1 mg/L, Sulfate = 180 mg/L
- Oxygen = 2 mg/L, Redox = +200 mV
- Chloride = 360 mg/L, pH = 6.2

Site 1. Edwards Air Force Base, CA

Site 2. U.S. Navy, West Virginia

- Ballistics testing facility
- Sandy silt alluvium (20 ft) over fractured bedrock
- Watertable at ~15 ft bgs
- ◆ ClO₄ in groundwater ~ 10 mg/L
- Nitrate = 4 mg/L, Sulfate = 55 mg/L
- Redox (ORP) = 285 mV
- Chloride = 25 mg/L, pH = 6.7

Site 2. U.S. Navy, West Virginia

Site 3. U.S. Navy, California

- Exploded ordinance disposal facility
- Medium to coarse beach sand
- Watertable at ~20 ft bgs
- ClO₄ up to 190 mg/kg in surface drainages
- ClO₄ in groundwater up to 200 μg/L
- Nitrate = 4 mg/L, Sulfate = 82 mg/L
- Redox (ORP) = 285 mV
- Chloride = 865 mg/L

Site 4. Rocket Site, California

- ◆ Active ClO₄ grinder station
- Silts to fine sands
- Watertable at ~15 ft bgs
- ClO₄ up to 1,200 mg/L in groundwater
- Nitrate = 2 mg/L, Sulfate = 75 mg/L
- Redox (ORP) = -10 mV
- VOCs (TCE, TCA) also present

Site 4. Rocket Site, California

Site 5. Aerojet Superfund Site

- Alluvial aquifer, interbedded silts, sands and gravel
- Aquifer depth 100 ft bgs, watertable 20 ft bgs
- $ClO_4 = 15 \text{ mg/L}$
- Nitrate = 5 mg/L, Sulfate = 10 mg/L
- Oxygen = 4 mg/L, Redox = +200 mV
- \bullet TCE = 3 mg/L
- pH = 6.8

Site 5. Aerojet Superfund Site

Site 5. Joint Cl0₄ & TCE Reduction

- Perchlorate plumes are commonly co-mingled with chlorinated solvents (e.g., TCE)
- Both ClO₄ and TCE undergo anaerobic reduction... BUT, microorganisms, mechanisms and redox requirements differ
- Determine whether ClO₄ and TCE can be jointly biodegraded, or whether activities are mutually exclusive
- Demonstrate successful joint bioremediation at field scale

PCE & TCE Degradation Pathways

TCE Dechlorination

- Specific halo-respiring bacteria mediate TCE dechlorination to ethene
- Halo-respirers are not ubiquitous
- TCE dechlorination often stalls at cis-1,2-DCE
- Cis-1,2-DCE dechlorination to VC is critical step
- Bioaugmentation with KB-1 can promote complete dechlorination to ethene

Bioaugmentation with KB-1, Aerojet Superfund Site

Sterile Control

Molasses Treatment

Molasses + TCE Degrader (KB-1)

Food Waste

Food Waste + TCE Degrader (KB-1)

Site 5. Aerojet Field Demonstration

- ◆ In situ anaerobic bioremediation of ClO₄ & TCE
- Initiated June 2000
- Target aquifer 100 ft bgs
- $ClO_4 = 15 \text{ mg/L}; TCE = 3 \text{ mg/L}$
- Goal: Migration Control for ClO₄ & TCE plume that is 800 feet wide

Plan View of Field Demo Layout

Closed loop (65 feet) re-circulation 5-10 gpm

Residence time = 21 days

Bromide mass retention >90% per pore volume

Schematic of Pilot Test System

Field Demo Instrumentation

Perchlorate Biodegradation at Well 3601

Perchlorate Biodegradation at Well 3600

Groundwater Geochemistry at Well 3601

Soil Bioremediation

Soil Bioremediation Goals

- 1. Meet residential/industrial PRGs (37 & 940 mg/Kg)
- 2. Reduce perchlorate infiltration to groundwater and/or overland flow to surface waters (> PAL of 18 ppb)
 - Ex situ treatment for accessible impacted soils
 - In situ treatment (via mixing, flushing, gas delivery) for deeper unsaturated soils (long-term sources for GW impact)

Soil Bioremediation

- Anaerobic bioremediation approach
- Can be used ex situ or in situ
- Successful lab and field demonstrations
 - Perchlorate Burn Area, Aerojet Superfund Site (Site 1)
 - Perchlorate Grinder Station, California (Site 2)
- Technology in commercial use

Site 1. Aerojet Superfund Site

- Former ClO₄ Burn Area
- ClO₄ hot spots up to 4,200 mg/kg
- Silty clay soil, low permeability
- Remedial goal = prevention of perchlorate infiltration to groundwater at concentration >PAL

Site 1: Bench-Scale Results

Degradation Half-Lives: 2 to 4 days

Compost Pilot Test Design

Site 1: Field Demonstration Results

Degradation Half-Lives: 1 to 2 days

Site 2. Rocket Site, California

- Active ClO₄ Grinder Station
- ClO₄ hot spots up to 2,100 mg/kg
- Silty soil, low permeability
- Remedial goal = prevention of perchlorate impacts to surfacewater via overland flow during storm events

CSD Bench-Scale Compost Units

Site 2: Bench-Scale Results

Sterile Control

Active Control

Station 0521 Treatment
(1:1 Soil to Compost Ratio)

Station 0521 Treatment (1:10 Soil to Compost Ratio)

Practical Quantitation Limit (PQL) = 0.1 mg/kg

Site 2: Field Demonstration Results

Phytoremediation

Phytoremediation Goals

- Plants can uptake and accumulate or transform ClO₄
- Phytoremediation being used to:
 - Extract perchlorate from impacted soil
 - Prevent infiltration and/or overland transport
 - Provide hydraulic control of GW, prevent discharge to SW
 - Engineered wetland to treat extracted groundwater

Greenhouse Study Results

- 4 Plant types (grasses, mustard, alfalfa)
- No germination at 1,000 mg/kg
- Evidence of uptake and transformation (in plant and/or rhizosphere)
- Removals up to 74% from soil; 82% from water
- Alfalfa best plant type tested
- Pilot test of phyto-irrigation using Alfalfa

Conceptualization of Phytoremediation Applications

Phytoremediation using Wetland Plants

Perchlorate Mass Loss with Sedges

Phytoremediation using Algae

Perchlorate Mass Loss with Algae

Conclusions

- In situ bioremediation proving to be cost-effective for:
 - Groundwater source destruction
 - Groundwater migration control
- Soil composting proving to be cost-effective to:
 - Reduce ClO₄ impacts to groundwater and surfacewater
- Phytoremediation being used to:
 - Control ClO₄ infiltration, migration and discharge to SW
 - Treat ClO₄ in surfacewater using wetland plants

Acknowledgements

- Bob Tossell & Michaye McMaster GeoSyntec
- Gerry Swanick Aerojet General Corporation
- Sandra Dwortzek & Alison Waller U. Toronto
- Bryan Harre NFESC
- Strategic Environmental Research & Development Program (SERDP)

